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Abstract: Collaborative robots, or “cobots,” represent a growing share of
industrial robots and have the potential to boost productivity, enhance work-
place flexibility, and improve working conditions across a wide range of indus-
tries. Drawing on expert assessments of cobot capabilities and detailed occupa-
tional task data from O*NET, we develop the Cobot Adoption Potential Index
(CAPI), a measure of the technical potential for cobot integration across occu-
pations. We link CAPI to data from the American Community Survey (ACS)
and the Bureau of Labor Statistics (BLS) to characterize the demographic com-
position of workers in high-potential occupations and to identify the industries
and regions where these occupations are concentrated. Workers in these occu-
pations tend to be younger on average, but cobot technology may also expand
opportunities for older workers and those with work-related disabilities. These
results provide a basis for targeting policies—such as training and workforce de-
velopment programs—to the workers and locations most likely to be affected.
Finally, we document that high-CAPI occupations currently exhibit elevated
workplace injury rates, highlighting opportunities for cobots to contribute to
improved occupational safety.
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1. Introduction and Related Literature

New robotic technologies hold significant potential for improving worker productivity and working

conditions (Schmidtler et al., 2015). In this paper, we focus on one emerging technology: collabora-

tive robots. Collaborative robots, or “cobots,” are robotic technologies designed to work alongside

people and offer flexible, safe, and user-friendly automation in manual tasks (Vicentini, 2021). The

cobot market share is projected to grow by nearly 30% in the U.S. and 32% globally by 2030 (Grand

View Research, 2023), which calls for an understanding where cobots can be integrated and what

their impacts may be.

Using detailed occupational task data from O*NET and expert assessments of cobot compat-

ibility for selected occupations (Liu et al., 2022), we develop the Cobot Adoption Potential Index

(CAPI ). CAPI provides a measure of the technical potential for cobot integration across occupa-

tions and serves as a tool for researchers and practitioners to identify where cobots could be most

effectively deployed. Importantly, this index reflects not only where cobots can be adopted but also

how they might transform the nature of work within those occupations. Cobots, like other forms

of automation, are most compatible with occupations characterized by repetitive, physical tasks.

However, unlike traditional industrial robots, cobots have substantial potential outside of manu-

facturing, with particular relevance for service-intensive sectors such as hospitality and agriculture.

We illustrate the use of CAPI through three applications. First, we link CAPI to detailed

regional data from the Bureau of Labor Statistics (BLS) to estimate where cobots are most likely

to be adopted, helping managers anticipate local competitive pressures. Second, we analyze the

demographic composition of workers in high-potential occupations using the American Community

Survey (ACS) to assess how easily the current workforce can adapt to cobot adoption. Because

successful cobot deployment depends on worker collaboration, understanding workforce adaptability

is essential. Finally, we examine workplace injury data and show that occupations with high CAPI

scores also have elevated injury rates, highlighting an opportunity for cobots to improve workplace

safety by reducing exposure to high-risk tasks. This has the additional potential of both reducing

employment costs and making jobs more appealing.

Geographically, we find that cobot adoption potential is broad, but relatively more concen-

trated in several areas of the southeastern and western United States. Demographically, workers

in high-CAPI occupations tend to be younger on average, which may facilitate skill acquisition

and technology adoption, but they also tend to have lower levels of formal education, suggesting

a need for targeted training interventions. Taken together, these results can inform policy design

and workforce development efforts aimed at maximizing the benefits of cobot technology while

minimizing potential disruption.

The state of cobot technology and potential for integration. Unlike traditional robotic

automation, which often minimizes or eliminates human interaction, cobots are explicitly designed

for collaborative configurations (Pearce et al., 2018). Their relative affordability, re-configurability,

and do-it-yourself (DIY) installation options make them more accessible than conventional robotic
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systems that typically require specialized expertise for safe integration (Magalhaes and Ferreira,

2022; Brettel et al., 2014).

Prior work has examined the technical and organizational conditions under which cobots can be

integrated into manual processes, identifying both opportunities and barriers (Ponda et al., 2010;

Pearce et al., 2018; Casalino et al., 2019; Bogner et al., 2018; Pupa and Secchi, 2021; Zhang et al.,

2022; Schoen et al., 2020). We build on this literature by consolidating multiple dimensions of cobot

technological capacity into a single index that allows for systematic assessment of cobot feasibility

at the occupation level across the U.S.

While cobots are seen as a safe, flexible, and relatively low-cost alternative to full automa-

tion (Michaelis et al., 2020), their collaborative nature requires additional investments in worker

training to ensure proper use, reconfiguration, and troubleshooting (Michaelis et al., 2020; Moffat

and Gray, 2015). Where cobots can best complement human work, and how workers adapt to

collaborative workflows, remain important open questions. Our contribution is to provide a tool—

the CAPI—that enables researchers, managers, and policymakers to systematically evaluate where

cobot adoption is technically feasible, who the affected workers are, and what strategic or policy

considerations should follow.

Automation vs. augmentation. The introduction of new technologies has sparked a long-

running debate about whether they primarily automate and substitute for human labor or augment

it by complementing human skills. CAPI is designed with the augmentation perspective in mind:

occupations that are already highly automatable receive lower CAPI scores, reflecting the idea that

cobots are less relevant where full automation is technically feasible (Bennett, 2020).

We emphasize that CAPI provides an upper bound on the potential for cobot adoption. Indeed,

work by Arntz et al. (2017); Autor and Handel (2013) and others show that estimates of replacement

based on average occupational tasks are likely to overestimate displacement, owing to, among

other things, task composition and variation of tasks even within narrowly defined occupations.

Over time, cobots may change the task composition of occupations, shifting them toward less

physically demanding, more supervisory, and decision-oriented roles. Depending on productivity

gains, this could either reduce employment in some occupations or expand it if output growth

is sufficiently large. Our approach is thus not designed to measure labor displacement but to

identify areas of likely augmentation. This is consistent with evidence that automation technologies

often reallocate rather than eliminate work, enabling workers to specialize in tasks that are less

automatable and potentially more rewarding (Gong and Png, 2024). Moreover, as Dixon et al.

(2021) show, robotics adoption can reorganize firms by increasing employment while reducing the

relative share of managers.

Connection with forecasting technology effects. Methodologically, our work is related to

research that forecasts the potential effects of other emerging technologies. Most closely, Felten

et al. (2021) develop an index of occupational exposure to artificial intelligence (AI) using task-level

data. As with AI, cobots are an emerging technology, and tools to evaluate their potential are still

evolving (McElheran et al., 2022). The work of Jia et al. (2024) shows how artificial intelligence
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enhances productivity, and that the effects are greater for employees with greater skill. Other

studies examine firm-level experiences with automation adoption, revealing challenges that can

limit productivity gains if integration is poorly managed (Tong et al., 2021; Feigenbaum and Gross,

2024). As cobot adoption expands, similar empirical approaches can be used to measure realized

impacts.

Finally, our focus on the demographic aspects of technology adoption adds another dimension.

As Arntz et al. (2017) note, moving from technically feasible to likely adoption requires under-

standing where and for whom technology will be deployed. We build on this by documenting the

demographic and geographic distribution of high-CAPI occupations, providing insight into which

workers and communities are most likely to experience the first wave of cobot adoption. This

complements evidence from MacCrory et al. (2014), who show that occupational skill composition

shifted between 2006 and 2014, with growth in technology-complementary skills and decline in skills

most directly substitutable by machines.

2. Cobot Capabilities and O*NET Occupational Tasks

To measure each occupation’s potential for cobot adoption, our first objective is to understand

both (1) the technical capabilities and limitations of cobots and (2) the tasks, activities, and work

environments that define each occupation. The occupational data come from the Occupational

Information Network (O*NET), sponsored by the U.S. Department of Labor and the Employment

and Training Administration, which provides detailed task and work context information for 923

occupations.

2.1 Illustrations of Cobots in Occupations: Potential and Limitations

To illustrate both the promise and constraints of cobot integration, we highlight two occupational

settings that differ markedly in their cobot compatibility.

High-Compatibility Example: Packaging and Food & Beverage. Packaging and pal-

letizing tasks in the food and beverage industry provide a clear example of occupations with high

cobot adoption potential. At Atria, a food manufacturer in Northern Europe, cobots (UR5 and

UR10 models) were introduced to label, pack, and palletize products, replacing bulkier packaging

equipment. Reported benefits included a payback period of roughly one year, dramatic reductions

in changeover times (from about six hours to twenty minutes), and measurable increases in through-

put and flexibility.1 Similarly, Clearpack deployed a UR10 cobot for case erecting, packing, and

palletizing in FMCG lines, emphasizing the compact footprint, safe collaborative design (requiring

little or no safety guarding), and ease of redeployment across production lines. 2 These examples

illustrate settings where tasks are repetitive, moderately physical, and highly structured, making

them well-suited for cobot integration.

1See case study at apfoodonline.com.
2See case study at universal-robots.com.
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Low-Compatibility Example: Automotive Assembly. Automotive final assembly pro-

vides a contrasting case, where cobot adoption potential is limited by payload requirements, task

complexity, and safety constraints. Runola (2024) analyzes a human-centric automobile assembly

line and finds that while certain subtasks—such as inspection, fastening, and moderate part han-

dling—are technically feasible for cobots, many others remain challenging due to the need for large

payload capacity, long reach, and high levels of dexterity and decision-making. 3 A feasibility

analysis of cobots for tightening stations in automotive manufacturing similarly notes that weight

limits and integration complexity constrain their usefulness. In these environments, conventional

industrial robots or hybrid human-robot cells may remain more practical solutions.

Cobot potential is highest where tasks are repetitive, structured, and ergonomically demanding

but fall within cobot payload and precision capabilities. Conversely, highly variable tasks requiring

significant decision autonomy or heavy-object manipulation remain challenging, providing natural

limits to CAPI scores for these occupations.

2.2 Identifying Relevant Tasks in O*NET

O*NET provides detailed occupational information for 923 occupations, including abilities, skills,

work activities, and work context. We focus primarily on work context, which captures the “physical

and social factors that influence the nature of work.” This module provides rich information

about task environment factors that are particularly relevant for cobot adoption, such as physical

demands, repetitiveness, interpersonal requirements, and decision-making autonomy.4 Table 1 lists

the key O*NET measures we use to capture factors that enhance or limit cobot suitability.

Occupations vary widely in their composition of tasks and environments, so cobots may play

very different roles depending on context. For example, cobots may be deployed in photography to

execute precise, repeatable camera movements, or in warehousing and logistics for pick-and-place

and stocking applications, where the environment can be engineered to facilitate automation. By

contrast, cobots are less effective in occupations involving manipulation of extremely heavy objects,

such as some automotive manufacturing tasks, where payload limitations reduce their usefulness.

Our index combines O*NET measures that either enhance or detract from cobot feasibility.

We expect that occupations with significant physical demands—shown in the upper panel of Ta-

ble 1—will generally have greater cobot potential. Repetitive motions also raise suitability for two

reasons: (1) engineers can design and reuse solutions more easily, reducing implementation cost,

and (2) repetitive motions are a major source of ergonomic risk for human workers (Armstrong

et al., 1986; Bernard and Putz-Anderson, 1997), so automation offers a clear benefit. By contrast,

occupations requiring high levels of interpersonal interaction or autonomous decision-making are

less amenable to cobot collaboration, as unpredictable human factors reduce the effectiveness of

automation. Finally, we include O*NET’s “auto-degree” measure to rule out occupations that are

3See Runola (2024).
4While there are additional O*NET modules (e.g., skills and work activities), we find that much of the information

is redundant. Including more modules does not materially improve precision in constructing the CAPI measure.
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Table 1: Key O*NET Work Context Measures Determining Cobot Suitability

physical related measurements (+)

(4.C.2.d.1.e) Spend Time Kneeling, Crouching, Stooping, or Crawling

(4.C.2.d.1.g) Spend Time Using Your Hands to Handle, Control, or Feel Objects, Tools, or Controls

(4.C.2.d.1.h) Spend Time Bending or Twisting the Body

repetitiveness (+)

(4.C.2.d.1.i) Spend Time Making Repetitive Motions

interpersonal skills (–)

(4.C.1.a.2.c) Public Speaking: How often do you have to perform public speaking in this job?

(4.C.1.a.4) Contact With Others: How much does this job require the worker to be in contact with others in order to perform it?

(4.C.1.b.1.e) Work With Work Group or Team: How important is it to work with others in a group or team in this job?

(4.C.1.b.1.f) Deal With External Customers: How important is it to work with external customers or the public in this job?

(4.C.1.b.1.g) Coordinate or Lead Others: How important is it to coordinate or lead others in accomplishing work activities in this job?

(4.C.1.c.1) Responsible for Others’ Health and Safety: How much responsibility is there for the health and safety of others in this job?

(4.C.1.c.2) Responsibility for Outcomes and Results: How responsible is the worker for work outcomes and results of other workers?

(4.C.1.d.1) Frequency of Conflict Situations: How often are there conflict situations the employee has to face in this job?

(4.C.1.d.2) Deal With Unpleasant or Angry People: How frequently does the worker have to deal with unpleasant, · · · individuals · · · ?
(4.C.1.d.3) Deal With Physically Aggressive People: How frequently does this job require the worker to deal with cdots?

decision making (–)

(4.C.3.a.1) Consequence of Error: How serious would the result usually be if the worker made a mistake that was not readily correctable?

(4.C.3.a.2.a) Impact of Decisions on Co-workers or Company Results: What results do your decisions usually have on other people or · · · ?
(4.C.3.a.2.b) Frequency of Decision Making: How frequently is the worker required to make decisions that affect other people, · · · ?
(4.C.3.a.4) Freedom to Make Decisions: How much decision making freedom, without supervision, does the job offer?

physical proximity (–)

(4.C.2.a.3) Physical Proximity: To what extent · · · worker to perform job tasks in close physical proximity to other people?

autodegree (–)

(4.C.3.b.2) Degree of Automation: How automated is the job?

already highly automated (or conversely, those for which automation is extremely unlikely).

With the task-level measures in Table 1, we capture the main factors that enhance or limit

cobot suitability, from physical demands and repetitiveness to interpersonal, decision-making, and

automation characteristics. Combining these components yields the Cobot Adoption Potential

Index (CAPI), which provides a consistent, occupation-level measure of where cobots could tech-

nically be deployed. In the next section, we apply CAPI to U.S. employment data to explore its

geographic, demographic, and industry distribution and to assess where cobot adoption is likely to

have the greatest potential impact.

3. Creating the Cobot Adoption Potential Index

In this section, we describe the construction of the Cobot Adoption Potential Index (CAPI). Using

O*NET data, we first identify tasks within occupations that are potentially suitable for cobots,

drawing on studies from the engineering and robotics design literature. We then construct several

candidate indices of cobot adoption potential based on these tasks. To select a preferred index,

we evaluate how well each candidate replicates expert assessments of occupations that have been

previously categorized as having high or low cobot potential. The index that performs best becomes

our CAPI measure, which we then apply to the full set of occupations to provide a consistent,

6



Table 2: Qualitative Assessment of Cobot Compatibility for Selected Occupations

SOC Code Occupation Title Compatibility

512011 Aircraft structure, surface, rigging and systems assemblers high
536051 transportation inspectors low
516041 Shoe and leather workers and repairers low
512061 Timing device assemblers and adjusters low
473011 Helpers—brickmasons, blockmasons, stonemasons, and tile and marble setters high
172111 Health and Safety Engineers, Except Mining Safety Engineers and Inspectors low
519071 Gem and diamond workers low
514071 Foundry mold and coremakers high
518091 Chemical plant and system operators high
512021 Coil winders, tapers, and finishers high
519192 Cleaning, washing, and metal pickling equipment operators and tenders high
492091 Avionics technicians low
513022 Meat, poultry, and fish cutters and trimmers high
516011 Laundry and dry-cleaning workers low
519111 Packaging and filling machine operators and tenders high
537062 Recycling and reclamation workers high

quantitative measure of cobot adoption potential. In the next section, we use this measure to

examine demographic, geographic, and industry patterns.

3.1 Choosing the CAPI Index

To identify the most accurate index, we first construct several candidate measures of cobot adoption

potential using combinations of O*NET variables. We then evaluate how well each candidate index

classifies occupations as “high” or “low” cobot compatibility using a small validation sample from

prior work.

3.1.1 Occupation Test Sample

We draw a subsample of occupations from Liu et al. (2022), who use O*NET task data and

information about cobot capabilities to rate occupations by their collaborative utility. Occupations

are classified as having “high” potential if they involve physical tasks that are well-structured

and easily modeled (e.g., with defined workspace processes and feasible sensing requirements) and

feature relatively few tasks requiring frequent judgment, inspection, or interpersonal connection.

Table 2 lists the 16 occupations used for validation, nine of which are classified as high cobot

compatibility and seven as low.

3.1.2 Index Selection

For each candidate index, we generate an indicator for cobot compatibility, which equals one when

the index value for an occupation is above the p-th quantile of the index distribution and zero
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otherwise:

I(compatible with cobot)o =

{
1 if CAPIo ≥ p-th quantile

0 if CAPIo < p-th quantile.
(1)

We test multiple quantile thresholds (p) and calculate the precision rate for each candidate

index relative to the expert-classified validation sample. Table 3 illustrates this procedure using a

simple hypothetical ranking of occupations.

Table 3: Example of How Threshold is Selected

occ 1 2 3 4 5 6 7 8 9 10
cobot potential low high
true compatibility 0 0 0 0 0 0 1 1 1 1
constructed index(e.g.) 0.5 1.3 4.6 5.1 6.2 6.8 10.5 12.2 14.2 16

Pick a specific threshold.
Compatible indicator = 1 If the index value ≥ threhold

indicator for compatible or not precision rate

30th quantile 0 0 1 1 1 1 1 1 1 1 0.6
50th quantile 0 0 0 0 1 1 1 1 1 1 0.8
70th quantile 0 0 0 0 0 0 1 1 1 1 1
90th quantile 0 0 0 0 0 0 0 0 1 1 0.8

We then apply this procedure to our subsample across all candidate indices and quantile thresh-

olds. Table A5 in Appendix A.2 reports the precision rates for the 70th quantile, while Table A1

shows results across thresholds. Among all candidates, Index 5 at the 70th quantile achieves the

highest precision rate (87.5%), and we adopt this combination as our preferred CAPI measure.

Composition of Index 5. Our preferred measure, Index 5, combines several key dimensions

of O*NET work context that theory and prior literature identify as relevant for cobot adoption.

Specifically, it sums the standardized scores for physical task measures (kneeling, stooping, han-

dling objects), adds weight for repetitiveness, and subtracts standardized scores for dimensions

that reflect barriers to cobot use, including decision-making autonomy, interpersonal skill intensity,

and physical proximity requirements. Finally, it incorporates O*NET’s “degree of automation” to

downweight occupations that are already highly automated. The resulting index is normalized to

have a mean of 50 and a standard deviation of 10 across occupations, yielding a continuous measure

from 0 to 100 that is comparable across the full set of 923 detailed occupations.

3.2 Categorizing Occupations

Having selected the preferred index, we apply it to the full set of 923 O*NET occupations. Each

occupation receives a CAPI score, normalized to range from 0 to 100. Figure 1 shows the distribu-

tion of scores across occupations. For interpretability, we define occupations in the top 30% of the

distribution as having “high” cobot adoption potential, where there is the most pronounced gap in

scores. Occupations below this cutoff are classified as “low” potential.
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Figure 1: Distribution of CAPI Scores Assigned to Occupations

Table A6 (Appendix A.1) lists representative occupations by quartile. High-CAPI occupations

include “Maids and Housekeeping Cleaners,” “Meat, Poultry, and Fish Cutters and Trimmers,” and

“Stockers and Order Fillers,” while low-CAPI occupations range from “Telecommunications Equip-

ment Installers and Repairers” to occupations with very low scores such as “Judges, Magistrate

Judges, and Magistrates” and “Family Medicine Physicians.”

These categorizations provide a systematic picture of where cobot adoption is technically feasible

and set the stage for the next section, where we link these scores to regional, demographic, and

industry data to explore broader implications for the workforce and policy.

4. The Geography and Demography of High-Potential Occupa-

tions

Having estimated which occupations have the greatest potential for cobot integration, we now

examine three dimensions of their distribution: (1) the geographic concentration of cobot-suitable

occupations within the United States, (2) the demographic composition of workers currently in

these occupations, and (3) the potential for cobots to improve workplace safety.

For these analyses, we link the Cobot Adoption Potential Index (CAPI) to additional data

sources. We connect occupation-level CAPI scores to the American Community Survey (ACS)

microdata (IPUMS ACS, 2015-2019) to summarize worker age, income, education, and other char-

acteristics by CAPI group. We also merge CAPI with occupation-level injury incidence data from

the Bureau of Labor Statistics Injuries, Illnesses, and Fatalities (IIF) program (Bureau of Labor

Statistics, U.S. Department of Labor, 2020) to assess whether high-CAPI occupations face elevated

risks that cobots could mitigate.
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4.1 Geography of Cobot Potential

We begin by examining which regions have the highest concentration of workers in cobot-compatible

occupations. Understanding the geography of cobot potential is valuable for managers and poli-

cymakers seeking to anticipate where competitive dynamics and workforce needs may shift most

rapidly. We construct occupation-weighted CAPI averages at both the state and Metropolitan

Statistical Area (MSA) levels using the May 2019 Occupational Employment and Wage Statistics

(OEWS) data from Bureau of Labor Statistics, U.S. Department of Labor (2019).

State- and MSA-level distributions. Figure 2 shows the distribution of average CAPI scores

across states, while Figure 3 presents weighted averages for selected MSAs.5 Dark blue shading

represents regions with lower average cobot adoption potential, whereas red shading represents

regions with higher potential. These maps indicate that cobot adoption potential is not simply

a function of population density; for example, Chicago’s MSA has a lower average CAPI than

Fresno’s, despite employing a much larger number of workers overall.6

Occupations in high CAPI MSAs and states. Table A7 lists the ten MSAs with the highest

cobot adoption potential and, for the top 5 MSAs, the largest occupations within the MSA based on

total current employment level and rate per 1,000 jobs. These are all MSA with highly specialized

local economies, with the top three (Madera, Salinas, and Visalia-Porterville, California) being agri-

cultural. The MSA with the fourth highest CAPI is Kahului-Wailuku-Lahaina, Hawaii, specializing

in tourism, with the fifth highest, Dalton, Georgia, specializing in carpet manufacturing.

[Insert Figure A7 here.]

Table A8 lists the top 10 States which are with the highest cobot adoption potential (shown also

in Figure 2) along with, for the five states with the highest average CAPI, the largest occupations

by employment. Not too surprisingly, there is less variation across states in the largest occupa-

tions compared to the variation across smaller and more specialized MSAs. However, the top two

states, Nevada and Hawaii, host a large tourism industry, while Wyoming, Indiana, and South

Dakota follow, with relatively higher shares of agricultural, manufacturing, and resource-intensive

occupations. While there is often a focus on collaborative robots in industrial and manufacturing

settings, this supports the large potential for adoption in the service and hospitality sectors studied

by Decker et al. (2017).

[Insert Table A8 here.]

4.2 Worker Characteristics and Cobot Compatibility

Next, we examine the demographic characteristics of workers currently employed in high- versus

low-CAPI occupations. This helps forecast who is most likely to be affected by cobot adoption and

5A full map of all MSAs is shown in Figure A6.
6An alternative figure based on absolute numbers would primarily reflect population size rather than intensity of

potential adoption.
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Figure 2: CAPI distribution at State level

Data Source: O*NET is used to construct the Cobot Adoption Potential Index (CAPI).
Occupational employment information by metropolitan statistical area and by state comes
from the May 2019 Occupational Employment and Wage Statistics (OEWS) by U.S. Bureau
of Labor Statistics (BLS).

Figure 3: CAPI Distribution at Metropolitan Statistical Area Level, Detailed Examples

(a) California (b) Wisconsin

(c) Michigan (d) Texas
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informs the design of policies such as training programs and educational investments.

We link CAPI scores to ACS microdata, using individual-level weights to obtain nationally

representative results. Figure 4 shows the distributions of age (panel a) and income (panel b)

for workers in occupations with high versus low CAPI scores. High-CAPI occupations tend to be

younger on average, suggesting a workforce more likely to invest in human capital and adapt to

new technology. However, these occupations also pay lower average annual wages, which may affect

the financial feasibility of retraining efforts.

For this exercise, we use the American Community Survey (ACS) to connect the CAPI with

worker demographic information. The ACS data is a nationally representative individual level

dataset which is released annually and includes information about jobs and occupations, demo-

graphic characteristics, social characteristics like disability status and educational attainment, and

economic characteristics like income. The rich information provided by the ACS data together with

the constructed CAPI score allow us to analyze and understand the characteristics of people who

are currently working in occupations with high cobot potential and with low cobot potential.

First, we consider the age distribution of workers in high- and low-cobot potential occupations.

Figure 4, panel (a) shows the age distributions for those who are in occupations with a CAPI

that indicates high or low potential of cobot adoption.7 Among those in occupations with high

CAPIs, the age distribution shows much younger average and modal ages (in red) compared to

those in occupations with low CAPIs (in green). A young workforce is promising for the ability

and willingness of workers to adapt to new technology, since investment in human capital is more

intense for an individual with more potential working years ahead. We also consider the income

level of workers in these occupations. The graph in panel (b) shows, more strikingly, that the total

annual income among those in high-cobot potential jobs have lower annual income on average.

Income levels may be of interest when considering the financial trade-offs of adopting cobots.

Figure 4: Distribution by Income and Age Groups

(a) age (b) income

7ACS individual-level personal weights are used in the summary table and all the following graphs.
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Next, we analyze demographic factors using the full range of CAPI scores instead of a binary

measure. In the set of graphs in Figure 6, each point represents, for all occupations with a given

small range of CAPI score around that point, the average level of the variable being measured. In

panel (a), we see the average age of workers in occupation by CAPI score, where for occupations

with CAPI scores that would be considered high, the average age is more dispersed and the trend

is flatter. For occupations with low CAPI scores, the average age is not only higher overall, but

also shows a less dispersed pattern with a clear trend downward as CAPI scores increase. Still, the

lower overall age for occupations with higher CAPI scores suggests that workers will be at a stage

of their careers where they can easily adjust their skills and adapt to new technologies.

Another way of analyzing the adaptability to workers is by education level. Figure 6 (b) reports

the average share of workers with at least a bachelor degree. The graph shows a more striking trend

than age, with workers in high cobot potential occupations having lower education on average. In

terms of implications, a workforce with lower education may need more investment in training

to utilize cobots, particularly if the cobots require computer programming to adapt them to new

environments.

Figure 5: Relationships Between Demographics and Occupation CAPI Scores

(a) age (b) education (proportion of workers with
bachelor and bachelor+ degree)

(c) income (d) other demographic indicators

Finally, we highlight a few other demographic characteristics that we can observe from the ACS
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Figure 6: Relationships Between Cognitive and Physical Difficulty and Occupation CAPI Scores

data. Graph (c) plots the patters for average income. As we saw with the binary measure, workers in

higher CAPI occupations also tend to receive lower wages. Graph (d) of Figure 6 shows the patterns

for other demographic variables on percent married, percent female, and race. Occupations with

CAPI scores that predict high potential for cobot adoption are made up of workers who are more

likely to be Hispanic and less likely to be married.

4.3 Physical Assistance, Injury Rates, and Cobots

Finally, we use our index to analyze the potential for cobots to improve the physical work environ-

ment. Cobots have the potential to make physical tasks more ergonomic and safe for workers.8 In

this application, we focus on they types of workplace barriers workers might face as well as injury

rates in the occupations with the highest potential for cobots.

These findings suggest cobots could expand opportunities for older workers and those with

disabilities through a wider range of occupations they are able to perform. Reduction of potential

injury rates very attractive to both prospective workers and firms. Using the ACS data, Figure

6 shows that workers in occupations with higher CAPI scores are more likely to have cognitive

difficulties and somewhat more likely to have physical difficulties. Cobots have the capacity to

ameliorate some of these physical difficulties.

Next we connect occupation CAPI scores to data on injury and exertion by occupation with the

Injuries, Illnesses, and Fatalities (IIF) 2020 data from the Bureau of Labor Statistics (BLS). The

8For instance, using data from the US and Germany, Gihleb et al. (2022) find that the introduction of robots
reduced the physical intensity and injury rates of workers exposed to industrial robots in their workplaces.
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adoption of cobots has the potential to reduce net injury and strain. As we show, occupations with

high CAPI scores—being more physically involved—have on average higher total injury incidence

rates. Cobots have the potential to improve workplace safety and reduce the rate of workplace

injury. All the following analyses use the injury incidence rate as the measurement for injury-

related questions.

The relationship between occupational CAPI scores and various incidence rates per 10,000

workers is shown in the graphs in Figure 7 and in Table A3. Looking first at Figure 7, we see that

in the top green trend lines in panels (a) and (b), the total injury and total average overexertion

rates increase as CAPI score increases. In these same graphs, sub-categories show a similar, though

muted, pattern. In panel (c), we see a weak relationship between CAPI and injury through exposure

to harmful substances or environments in the blue trend line, with a positive relationship between

CAPI scores and injury by contact with objects or equipment. Finally, panel (d) shows a weak

relationship between inpatient hospitalization and CAPI scores (in red), but strong relationships

between emergency room visits and CAPI scores, as well as total treatments at medical facilities

and CAPIs.

Table A3 tabulates the summary for the same data where occupations are grouped as having

either high or low cobot adoption potential. Here too we can see that occupations with high cobot

adoption potential have significantly higher rates of injury, with the total injury incidence rate

per 10,000 workers being 102.8 for workers in occupations with low CAPI scores and 188.7 for

workers in occupations with high CAPI scores. In all injury-related aspects, as well as medical

treatment facility visits, the average incidence rate is significantly higher for occupations with high

cobot potential. This is relevant because, on net, cobots have the potential to reduce injuries if

integrated strategically, which is highly valuable for all parties.

Cobot adoption potential is widely distributed across the United States but is particularly

concentrated in agricultural, manufacturing, and service-oriented regions with specialized local

economies. Workers in high-CAPI occupations are younger on average but earn lower wages and

have lower educational attainment, suggesting that targeted training and workforce development

programs may be needed to realize the productivity and safety benefits of cobots. Finally, the

significantly higher injury rates observed in high-CAPI occupations point to the potential for cobots

to improve job quality and workplace safety if deployed thoughtfully. These findings highlight

opportunities for policymakers and managers to direct training, safety initiatives, and technology

investment to the workers and communities most likely to be affected.

5. Discussion and Conclusion

Collaborative robots are an expanding technology designed to work alongside human workers, with

the potential to augment human tasks, improve workplace safety, and increase productivity. While

cobots may lead to some automation and displacement in certain tasks, their defining feature is

their ability to complement rather than fully replace human labor. In this paper, we introduced
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Figure 7: Relationship Between Injury Rates and Occupation CAPI

(a) total injury rate (b) total overexertion rate

(c) other injury (d) total medical treatment

the Cobot Adoption Potential Index (CAPI), a simple, occupation-level measure based on detailed

task characteristics from O*NET.

We demonstrated how CAPI can be applied to three key domains: (1) the geography of cobot

potential, highlighting regions where adoption is most feasible and competitive pressures are likely

to drive investment; (2) the demographic profile of workers in high-CAPI occupations, which helps

anticipate how readily the workforce can adapt and which groups may need targeted training

support; and (3) the relationship between CAPI and occupational injury rates, underscoring the

potential for cobots to make physically demanding jobs safer and more attractive.

Policy and Managerial Implications. Our results suggest several actionable takeaways for pol-

icymakers and managers. First, high-CAPI occupations are concentrated in particular MSAs and

states—often in agriculture, hospitality, and certain types of manufacturing—providing a roadmap

for where workforce development resources could be prioritized. Second, the relatively low edu-
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cational attainment of workers in high-CAPI occupations implies that training programs should

focus on practical, job-embedded skill development rather than lengthy formal retraining. Third,

the elevated injury rates we document highlight an important opportunity: cobots could reduce

workers’ physical strain, potentially extending careers and reducing employer costs from injury-

related absences. Together, these findings suggest that well-designed policies and investments can

maximize the benefits of cobot technology while minimizing risks of displacement.

Limitations and Future Research. While our approach highlights where cobots could be

adopted, it does not fully address whether they will be adopted. In particular, information on

the relative costs of cobots versus local labor, as well as firm-specific return-on-investment calcula-

tions, are critical to determining adoption decisions. CAPI should therefore be viewed as an upper

bound on eventual adoption rates, conditional on current technology. Moreover, cobot capabilities

are rapidly evolving, which means that future updates to CAPI could reveal new opportunities for

integration.

Cobots represent a distinctive blend of automation and collaboration, allowing firms to redesign

workflows in ways that complement human labor rather than merely replace it. By providing a

transparent, data-driven measure of cobot adoption potential, the CAPI offers a tool for researchers,

managers, and policymakers seeking to understand where cobots can create the most value. As

adoption accelerates, future work should track realized impacts on employment, productivity, and

job quality, ensuring that the promise of cobots translates into tangible benefits for workers, firms,

and society.
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A.1 Additional Tables and Figures

Table A1: Precision Rates of Candidate Indices Across Thresholds, Sums

precision rate | threshold=xth quantile
version data source · · · 60th 62th 64th 66th 68th 70th 72th 74th 76th 78th 80th · · ·

1 work context 0.750 0.813 0.813 0.813 0.813 0.813 0.813 0.750 0.688 0.688 0.688
2 work context 0.750 0.688 0.750 0.750 0.750 0.750 0.750 0.813 0.813 0.813 0.750
3 work context 0.625 0.625 0.688 0.625 0.688 0.688 0.688 0.625 0.563 0.625 0.500
4 work context 0.563 0.563 0.563 0.563 0.688 0.688 0.625 0.625 0.688 0.625 0.563
5 work context 0.750 0.813 0.813 0.813 0.813 0.875 0.813 0.688 0.625 0.500 0.500
6 work context 0.625 0.625 0.688 0.625 0.563 0.625 0.625 0.688 0.625 0.563 0.500
7 work context 0.750 0.750 0.813 0.813 0.813 0.750 0.750 0.750 0.688 0.688 0.500
8 work context 0.750 0.750 0.750 0.813 0.750 0.750 0.750 0.688 0.688 0.688 0.563
9 work context 0.688 0.688 0.688 0.750 0.750 0.688 0.688 0.688 0.625 0.625 0.500
10 work context 0.750 0.813 0.750 0.813 0.813 0.813 0.813 0.750 0.750 0.625 0.563
11 work context 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688
12 work context 0.625 0.625 0.688 0.688 0.688 0.750 0.750 0.750 0.688 0.688 0.750
13 work context 0.625 0.625 0.688 0.688 0.750 0.750 0.750 0.750 0.813 0.813 0.688
14 work context 0.688 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.813 0.813 0.813
15 work activities 0.688 0.688 0.625 0.563 0.563 0.563 0.563 0.563 0.500 0.500 0.500
16 work activities 0.688 0.688 0.688 0.688 0.688 0.625 0.625 0.563 0.625 0.563 0.625

Table A2: Precision Rates of Candidate Indices Across Thresholds, Means

precision rate | threshold=xth quantile
version data source · · · 60th 62th 64th 66th 68th 70th 72th 74th 76th 78th 80th · · ·

1 work context 0.750 0.813 0.813 0.813 0.813 0.813 0.813 0.750 0.688 0.688 0.688
2 work context 0.750 0.750 0.750 0.750 0.750 0.813 0.813 0.813 0.813 0.750 0.750
3 work context 0.688 0.688 0.688 0.688 0.625 0.625 0.625 0.688 0.625 0.688 0.750
4 work context 0.625 0.625 0.625 0.625 0.563 0.563 0.563 0.563 0.563 0.688 0.688
5 work context 0.688 0.688 0.688 0.688 0.750 0.813 0.813 0.813 0.813 0.813 0.875
6 work context 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.688 0.625 0.563 0.625
7 work context 0.688 0.688 0.750 0.750 0.750 0.750 0.750 0.813 0.813 0.813 0.750
8 work context 0.688 0.688 0.688 0.750 0.750 0.750 0.750 0.813 0.813 0.750 0.750
9 work context 0.625 0.625 0.625 0.688 0.688 0.688 0.688 0.750 0.750 0.688 0.688
10 work context 0.750 0.750 0.750 0.750 0.750 0.813 0.750 0.750 0.813 0.813 0.813
11 work context 0.688 0.688 0.688 0.688 0.688 0.750 0.688 0.688 0.688 0.688 0.688
12 work context 0.688 0.688 0.688 0.750 0.750 0.750 0.688 0.688 0.688 0.750 0.688
13 work context 0.688 0.688 0.750 0.750 0.750 0.750 0.750 0.813 0.750 0.688 0.625
14 work context 0.750 0.750 0.750 0.750 0.750 0.750 0.813 0.813 0.813 0.813 0.813
15 work activities 0.625 0.563 0.563 0.563 0.563 0.563 0.500 0.500 0.500 0.500 0.500
16 work activities 0.688 0.688 0.625 0.625 0.625 0.563 0.625 0.625 0.563 0.563 0.500
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Figure A2: Correlation Between CAPI and Automation Degree

(a) auto degree (b) auto degree by cobot compatible group

A.2 Alternative Indices and Selection

We constructed several potential indices as a function of the O*NET work context categories. We used both linear

and non-linear combinations of the context measures. To begin, we first standardized each of the work context

measurements with mean zero and standard deviation of one. This was to eliminate the concern that the range of

different measurements can be different, and to make preparations for constructing cobot indices.9 We discuss five

versions in detail below. Table A4 of the Appendix describes all the other versions that have been considered.10 In

the next section, we will discuss how we choose our preferred index from among these different options.

Index 1. The first candidate index version uses physical related measurements and repetitiveness. And for a given

occupation o, the index is calculated in the following way. Conditional on repetitiveness being the same, the more

physical related tasks included in the occupation, the higher the score. However, if very few of the tasks are repetitive,

it will be hard to set up the function and use the cobot to assist which will lead to a low CAPI. This is true no matter

how high the physical measurements are.

index1o =
∑

j∈physical measurements

jo × repetitivenesso (2)

In the equation, for the first term we use the sum of all physical measurements instead of using the mean. This

is because we think that the “number” of tasks that are physically related are also vital in determining cobot

compatibility and could have significance.

Index 2. Instead of using the product form, the second version uses the sum of physical related measurements and

9We do not re-weight each measurement based on the occupational labor supply. Since whether an occupation
has the potential to be compatible with cobot should depend on the occupational technology attributes but not on
how many workers are working in that occupation. From this perspective of view, it is not necessary to put more
weights on occupations with larger size when constructing CAPI.

10Whenever it is in product form, we adjust so that product of two negative terms does not achieve the same
outcome as the product of two positive terms. For visual clarity, it is not explicitly written out in the equation.
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Table A3: Summary Statistics in Occupations Based on CAPI Group

Compatibility with Cobot

Low potential High potential All

Demographics

age 43.2 38.8 41.9
annual wage and salary income($) 58,544 29,703 49,576
female 0.50 0.43 0.48
married 0.57 0.41 0.52
white 0.76 0.69 0.74
Hispanic 0.14 0.25 0.17
high school degree 0.96 0.84 0.92
some collage 0.70 0.36 0.59
bachelor plus 0.45 0.10 0.34
ambulatory difficulty 0.02 0.02 0.02
cognitive difficulties 0.01 0.03 0.02

Injury related aspects*

total injury rate 102.8 188.7 132.2
sprains/strains/tears 28.1 45.3 34.7
fractures 9.1 12.7 10.5

total injury rate for overexertion and body reaction 23.5 45.8 31.8
overexertion in lifting or lower 10.2 14.5 12.1
repetitive motion involving microtasks 1.6 3.6 2.5

other affiliated injuries
contact with object, equipment 17.1 42.4 27.6
exposure to harmful substances or environments 45.1 60.3 50.4

Medical treatment facility visits**

total medical treatment facility 27.7 52.5 36.6
emergency room visits only 24.6 45.2 32.2
inpatient/overnight hospitalization 5.5 8.3 6.6

* Incidence rates of nonfatal occupational injuries and illnesses involving days away from work by occupation and
medical treatment facility visits, all U.S., private industry, 2020. Source: Bureau of Labor Statistics

** Incidence rates for nonfatal occupational injuries and illnesses involving days away from work per 10,000 full-
time workers by occupation and selected nature of injury or illness, private industry, 2020. Source: Bureau of
Labor Statistics

repetitiveness. Thus, this method separately considers the physicality of the task and how repetitive the tasks are.

index2o =
∑

j∈physical measurements

jo + repetitivenesso (3)
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Index 3. This version extends Index 2 by including the need for interpersonal skills as an attenuating factor.

index3o =
∑

j∈physical measurements

jo + repetitivenesso −
∑

j∈interpersonal skills

jo (4)

Index 4. This version brings physical proximity and auto-degree into consideration. Conditional on everything else

being the same, if the job requires the worker to perform tasks in a very close physical proximity to other people, it

will be hard to set up the cobot under this situation. In the O*NET data, the higher the physical proximity, the closer

the distance. Therefore, physical proximity is negatively correlated with cobot collaboration potential. Auto-influence

is created based on the auto-degree. If the auto-degree of a certain occupation is too high or too low relative to the

median auto-degree of all the occupations, the value of auto-influence will be very negative and decrease the CAPI.

When auto-degree is too high, it might have already been automated and have no room for cobot collaboration.

When the auto-degree is too low, it may be extremely hard to assign any of the tasks to robot or cobot.

auto-influenceo =−
[
auto-degreeo −median(auto-degree)

]2
(5)

index4o =
∑

j∈physical measurements

jo + repetitivenesso

−
∑

j∈interpersonal skills

jo − physical proximityo + auto-influenceo

Index 5. In the fifth version, we substitute the interpersonal skills of Index 3 with decision making as an alternative

attenuating factor. If an occupation requires the worker to frequently make decisions that have impacts on other

people, if the consequence of each decision is serious, or if any errors can lead to a severe outcome, then this occupation

may not be a good candidate and be with low CAPI.

index5o =
∑

j∈physical measurements

jo + repetitivenesso −
∑

j∈decision making

jo (6)

In addition to using the sum of the measurements as the measure for each dimension, we considered other

versions such as simple averages or using the principle component analysis to reduce the dimension and to construct

the components which can expressing the maximum information from the original measurements to improve the

quality of the information.

Principle Component Analysis. Using the Kaiser-Guttman criterion, we only keep those components whose

eigenvalues are above 1.0 and believe that these components can capture considerable amount of information in

the data. Take the interpersonal skill dimension for example. Under this dimension there are ten measurements

and principal component analysis reveals that only the first three components are with eigenvalues greater than

1.0. By the rule of thumb, we only keep those three components and therefore the dimension for interpersonal skill

measurements decreases from ten to three. Inside Table A4, PCA(physical measurements) is then calculated in the

following way:

PCA(physical measurements) = component 1 + component 2 + component 3. (7)

The same logic applies to other principle component analysis listed in the table.

Using means instead sums to construct the CAPI. Comparing with all the ‘sum’ versions listed in Table

A4, the ‘mean’ versions’ precision rates are no higher than 87.5%. It is found that Index5 consistently provides the

best results, though the threshold is at the 80th quantile under this ‘mean’ version. For worries that if the threshold

of dividing the whole population into high and low cobot potential group is too high(or too low), we may have

fewer information for the high potential group(or low potential group). We have preference for the threshold to be

somewhere near the middle. Therefore, we keep using ‘sum’ version with Index5 and 70th quantile as the threshold

to construct our CAPI in later analysis.
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Table A4: Alternative CAPI Indices

version data source description

1 work context
∑

physical measurements × repetitiveness

2 work context
∑

physical measurements + repetitiveness

3 work context

∑
physical measurements + repetitiveness

-
∑

interpersonal skill measurements

4 work context

∑
physical measurements + repetitiveness

-
∑

interpersonal skill measurements

- physical proximity + auto-influence)

5 work context

∑
physical measurements + repetitiveness

-
∑

decision making freedom

6 work context

∑
physical measurements + repetitiveness

-
∑

interpersonal skills -
∑

decision making freedom

7 work context

∑
physical measurements + repetitiveness

-
∑

decision making freedom - physical proximity

8 work context

∑
physical measurements + repetitiveness

-
∑

decision making freedom + auto-influence

9 work context

[∑
physical measurements + repetitiveness

-
∑

decision making freedom
]
×

∑
interpersonal skills

10 work context

[∑
physical measurements + repetitiveness

-
∑

decision making freedom
]
× auto-influence

11 work context

PCA(physical measurements) + repetitiveness

- PCA(interpersonal skills) - PCA(decision making freedom)

- physical proximity + auto-influence

12 work context
PCA (physical measurements) + repetitiveness

- PCA(interpersonal skills) - PCA(decision making freedom)

13 work context
PCA(physical measurements) + repetitiveness

- PCA(interpersonal skills)

14 work context
PCA(physical measurements) + repetitiveness

- PCA(decision making freedom)

15 work activities

∑
physical measurements -

∑
Interaction with people

-
∑

decision making

16 work activities
PCA(physical measurements) - PCA(Interaction with people)

- PCA(decision making)

Notes: PCA standards for principle component analysis. Other versions using mean in-
stead of sum have also been tested, while the precision rate is no higher than 87.5%. The
results for the ‘mean’ version is listed in the Table A2 in the Appendix.

T. Tables and Figures
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Table A5: Precision Rate of all Indices with Threshold at 70th Quantile

index version data source precision rate assessments matched

1 work context 0.813 13 out of 16
2 work context 0.750 12 out of 16
3 work context 0.688 11 out of 16
4 work context 0.688 11 out of 16
5 work context 0.875 14 out of 16
6 work context 0.625 10 out of 16
7 work context 0.750 12 out of 16
8 work context 0.813 13 out of 16
9 work context 0.688 11 out of 16
10 work context 0.813 13 out of 16
11 work context 0.688 11 out of 16
12 work context 0.750 12 out of 16
13 work context 0.750 12 out of 16
14 work context 0.750 12 out of 16
15 work activities 0.563 9 out of 16
16 work activities 0.625 10 out of 16

Figure A6: The Distribution of MSA-level CAPI Scores
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Table A6: Examples of Occupations in Different CAPI Quartile

Occupation Title* CAPI Quartile CAPI
Compatible
with Cobot

Maids and Housekeeping Cleaners 4 100.00 high
Fiberglass Laminators and Fabricators 4 92.29 high
Textile Knitting and Weaving Machine Setters, Operators, and Tenders 4 88.04 high
Shoe Machine Operators and Tenders 4 87.52 high
Tile and Stone Setters 4 83.87 high
Floor Sanders and Finishers 4 83.67 high
Painters, Construction and Maintenance 4 83.34 high
Terrazzo Workers and Finishers 4 82.90 high
Cement Masons and Concrete Finishers 4 82.75 high
Pressers, Textile, Garment, and Related Materials 4 81.92 high
· · ·
Carpenters 3 55.95 high
Word Processors and Typists 3 55.92 high
Photographers 3 55.91 high
Earth Drillers, Except Oil and Gas 3 55.71 high
Stockers and Order Fillers 3 55.63 high
· · ·
Telecommunications Equipment Installers and Repairers, Except Line Installers 3 51.66 low
Animal Caretakers 3 51.58 low
Proofreaders and Copy Markers 3 51.23 low
Dental Laboratory Technicians 3 51.14 low
Food Service Managers 3 51.05 low
· · ·
Telemarketers 2 40.61 low
Counter and Rental Clerks 2 40.49 low
Insurance Appraisers, Auto Damage 2 40.45 low
Exercise Physiologists 2 40.39 low
Automotive Engineering Technicians 2 40.39 low
Aerospace Engineering and Operations Technologists and Technicians 2 40.39 low
Environmental Engineering Technologists and Technicians 2 40.38 low
Extruding and Drawing Machine Setters, Operators, and Tenders, Metal and Plastic 2 40.35 low
Retail Salespersons 2 40.31 low
Museum Technicians and Conservators 2 40.27 low
· · ·
Instructional Coordinators 1 27.82 low
Concierges 1 27.69 low
Materials Scientists 1 27.58 low
Interior Designers 1 27.47 low
Atmospheric and Space Scientists 1 27.40 low
· · ·
Real Estate Brokers 1 4.91 low
Judges, Magistrate Judges, and Magistrates 1 4.00 low
Psychiatrists 1 1.32 low
Neurologists 1 0.37 low
Family Medicine Physicians 1 0.00 low

* Occupations are listed based on the descending order of CAPI. Contains a subset of the 892 occupations, specifically those
at the top of each quartile by CAPI, and at the top of the occupations categorized as having “low” cobot adoption potential.
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Table A7: The Top Ten Metropolitan Areas with Highest CAPI

CAPI Rank Metropolitan Statistical Area High Potential Occupations CAPI
Total

Employment

The Number of Jobs
in the Given Occupation

per 1,000 Jobs
in the Given Area

1 Madera, CA Farmworkers and Laborers, Crop, Nursery, and
Greenhouse

81.48 6,340 135.8

Cashiers 54.65 1,200 25.7
Fast Food and Counter Workers 65.15 1,110 23.9
Packers and Packagers, Hand 67.57 1,010 21.6
Janitors and Cleaners, Except Maids and House-
keeping Cleaners

61.38 980 21.0

Laborers and Freight, Stock, and Material
Movers, Hand

61.05 820 17.5

Maintenance and Repair Workers, General 60.60 490 10.5
· · ·

2 Salinas, CA Farmworkers and Laborers, Crop, Nursery, and
Greenhouse

81.48 30,880 168.8

Cashiers 54.65 4,900 26.8
Fast Food and Counter Workers 65.15 4,390 24.0
Laborers and Freight, Stock, and Material
Movers, Hand

61.05 4,200 22.9

Waiters and Waitresses 67.21 3,990 21.8
Maintenance and Repair Workers, General 60.60 2,130 11.6
Maids and Housekeeping Cleaners 100.00 2,070 11.3
· · ·

3 Visalia-Porterville, CA Farmworkers and Laborers, Crop, Nursery, and
Greenhouse

81.48 24,650 158.3

Cashiers 54.65 4,820 31.0
Fast Food and Counter Workers 65.15 3,680 23.6
Laborers and Freight, Stock, and Material
Movers, Hand

61.05 2,660 17.1

Stockers and Order Fillers 55.63 2,300 14.8
Industrial Truck and Tractor Operators 52.30 2,280 14.7
Packers and Packagers, Hand 67.57 1,870 12.0
· · ·

4 Kahului-Wailuku-Lahaina, HI Waiters and Waitresses 67.21 4,100 53.8
Maids and Housekeeping Cleaners 100.00 3,210 42.1
Fast Food and Counter Workers 65.15 2,180 28.5
Cashiers 54.65 2,160 28.3
Cooks, Restaurant 70.82 1,980 26.0
Landscaping and Groundskeeping Workers 71.95 1,650 21.7
Maintenance and Repair Workers, General 60.60 1,470 19.3
· · ·

5 Dalton, GA Textile Winding, Twisting, and Drawing Out
Machine Setters, Operators, and Tenders

78.36 4,530 70.3

Laborers and Freight, Stock, and Material
Movers, Hand

61.05 3,270 50.8

Cashiers 54.65 1,800 27.9
Industrial Truck and Tractor Operators 52.30 1,530 23.8
Customer Service Representatives 56.53 1,350 21.0
Fast Food and Counter Workers 65.15 1,330 20.7
Industrial Machinery Mechanics 61.03 1,200 18.6
· · ·

6 Ocean City, NJ
7 San German, PR
8 Wenatchee, WA
9 Yuma, AZ

10 Sebring, FL
· · ·
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Table A8: Top Ten States with Highest CAPI

CAPI Rank Metropolitan Statistical Area High Potential Occupations CAPI
Total

Employment

The Number of Jobs
in the Given Occupation

per 1,000 Jobs
in the Given Area

1 Nevada Fast Food and Counter Workers 65.15 43,310 31.1
Waiters and Waitresses 67.21 37,300 26.8
Cashiers 54.65 37,060 26.6
Laborers and Freight, Stock, and Material Movers, Hand 61.05 37,000 26.6
Janitors and Cleaners, Except Maids and Housekeeping Cleaners 61.38 29,360 21.1
Customer Service Representatives 56.53 28,200 20.2
Maids and Housekeeping Cleaners 100.00 25,140 18.1
· · ·

2 Hawaii Waiters and Waitresses 67.21 19,500 30.7
Fast Food and Counter Workers 65.15 17,070 26.9
Cashiers 54.65 13,270 20.9
Maids and Housekeeping Cleaners 100.00 13,230 20.8
Janitors and Cleaners, Except Maids and Housekeeping Cleaners 61.38 11,910 18.7
Cooks, Restaurant 70.82 11,220 17.7
Food Preparation Workers 61.15 9,290 14.6
· · ·

3 Wyoming Cashiers 54.65 6,350 23.2
Fast Food and Counter Workers 65.15 6,000 21.9
Waiters and Waitresses 67.21 4,740 17.4
Janitors and Cleaners, Except Maids and Housekeeping Cleaners 61.38 4,530 16.6
Maintenance and Repair Workers, General 60.60 3,480 12.7
Stockers and Order Fillers 55.63 3,300 12.1
Nursing Assistants 56.34 3,200 11.7
· · ·

4 Indiana Fast Food and Counter Workers 65.15 101,290 33.0
Laborers and Freight, Stock, and Material Movers, Hand 61.05 93,040 30.3
Cashiers 54.65 69,340 22.6
Customer Service Representatives 56.53 53,480 17.4
Waiters and Waitresses 67.21 49,690 16.2
Stockers and Order Fillers 55.63 46,490 15.1
Janitors and Cleaners, Except Maids and Housekeeping Cleaners 61.38 43,230 14.1
· · ·

5 South Dakota Fast Food and Counter Workers 65.15 13,130 30.9
Cashiers 54.65 12,550 29.5
Customer Service Representatives 56.53 8,810 20.7
Janitors and Cleaners, Except Maids and Housekeeping Cleaners 61.38 8,250 19.4
Waiters and Waitresses 67.21 7,020 16.5
Nursing Assistants 56.34 5,990 14.1
Laborers and Freight, Stock, and Material Movers, Hand 61.05 5,720 13.4
· · ·

6 Montana
7 Wisconsin
8 Kentucky
9 South Carolina
10 Alabama

· · ·
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